SPF Algorithm ( in OSPF )

The Shortest Path First (SPF) routing algorithm is the basis for OSPF operations. When an SPF router is powered up, it initializes its routing-protocol data structures and then waits for indications from lower-layer protocols that its interfaces are functional.

After a router is assured that its interfaces are functioning, it uses the OSPF Hello protocol to acquire neighbors, which are routers with interfaces to a common network. The router sends hello packets to its neighbors and receives their hello packets. In addition to helping acquire neighbors, hello packets also act as keepalives to let routers know that other routers are still functional.

On multiaccess networks (networks supporting more than two routers), the Hello protocol elects a designated router and a backup designated router. Among other things, the designated router is responsible for generating LSAs for the entire multiaccess network. Designated routers allow a reduction in network traffic and in the size of the topological database.

When the link-state databases of two neighboring routers are synchronized, the routers are said to be adjacent. On multiaccess networks, the designated router determines which routers should become adjacent. Topological databases are synchronized between pairs of adjacent routers. Adjacencies control the distribution of routing-protocol packets, which are sent and received only on adjacencies.

Each router periodically sends an LSA to provide information on a router's adjacencies or to inform others when a router's state changes. By comparing established adjacencies to link states, failed routers can be detected quickly, and the network's topology can be altered appropriately. From the topological database generated from LSAs, each router calculates a shortest-path tree, with itself as root. The shortest-path tree, in turn, yields a routing table.

No comments: