A designated router (DR) is the router interface elected among all routers on a particular multiaccess network segment, generally assumed to be broadcast multiaccess. Special techniques, often vendor-dependent, may be needed to support the DR function on nonbroadcast multiaccess (NBMA) media. It is usually wise to configure the individual virtual circuits of a NBMA subnet as individual point-to-point lines; the techniques used are implementation-dependent.
Do not confuse the DR with an OSPF router type. A given physical router can have some interfaces that are designated, others that are backup designated (BDR), and others that are non-designated. If no router is DR or BDR on a given subnet, the BDR is first elected, and then a second election is held if there is more than one BDR. The router winning the second election becomes DR, or, if there is no other BDR, designates itself DR. The DR is elected based on the following default criteria:
- If the priority setting on a OSPF router is set to 0, that means it can NEVER become a DR or BDR (Backup Designated Router).
- When a DR fails and the BDR takes over, there is another election to see who becomes the replacement BDR.
- The router sending the Hello packets with the highest priority wins the election.
- If two or more routers tie with the highest priority setting, the router sending the Hello with the highest RID (Router ID) wins. NOTE: a RID is the highest logical (loopback) IP address configured on a router, if no logical/loopback IP address is set then the Router uses the highest IP address configured on its active interfaces. (e.g. 192.168.0.1 would be higher than 10.1.1.2).
- Usually the router with the second highest priority number becomes the BDR.
- The priority values range between 0 - 254, with a higher value increasing its chances of becoming DR or BDR.
- IF a HIGHER priority OSPF router comes online AFTER the election has taken place, it will not become DR or BDR until (at least) the DR and BDR fail.
- If the current DR 'goes down' the current BDR becomes the new DR and a new election takes place to find another BDR. If the new DR then 'goes down' and the original DR is now available, it then becomes DR again, but no change is made to the current BDR.
DR's exist for the purpose of reducing network traffic by providing a source for routing updates, the DR maintains a complete topology table of the network and sends the updates to the other routers via multicast. This way all the routers do not have to constantly update each other, and can rather get all their updates from a single source. The use of multicasting further reduces the network load. DRs and BDRs are always setup/elected on Broadcast networks (Ethernet). DR's can also be elected on NBMA (Non-Broadcast Multi-Access) networks such as Frame Relay or ATM. DRs or BDRs are not elected on point-to-point links (such as a point-to-point WAN connection) because the two routers on either sides of the link must become fully adjacent and the bandwidth between them cannot be further optimized.
No comments:
Post a Comment